Exercise 96

Suppose $y=f(x)$ is a curve that always lies above the x-axis and never has a horizontal tangent, where f is differentiable everywhere. For what value of y is the rate of change of y^{5} with respect to x eighty times the rate of change of y with respect to x ?

Solution

$$
\frac{d}{d x}\left(y^{5}\right)=80 \cdot \frac{d}{d x}(y)
$$

Evaluate the derivative on the left with the chain rule.

$$
\begin{aligned}
\left(5 y^{4}\right) \cdot \frac{d}{d x}(y) & =80 \cdot \frac{d}{d x}(y) \\
\left(5 y^{4}\right) \cdot y^{\prime} & =80 \cdot y^{\prime}
\end{aligned}
$$

Cancel y^{\prime} and solve for y.

$$
\begin{gathered}
5 y^{4}=80 \\
y^{4}=16 \\
y= \pm 2
\end{gathered}
$$

Since $y=f(x)$ always lies above the x-axis, $y>0$.

$$
y=2
$$

